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1. Basics of the term structure



Building Block: Zero-Coupon Bonds

Zero-coupon bonds: Investors get the face value at maturity and there is no interim
coupon payment. Assume no default risk.

▶ n-year maturity bond yield yt(n)

yt(n) = −1

n
ln(Pt(n))

where Pt(n) is the price of an n-year maturity bond. Continuously compounding is
assumed here.

1 / 108



Par Yield Curve

Assume the bond pays coupon semi-annually at stated annual coupon rate of c . The
price of such a bond equals

Pt(n) =
2n∑
i=1

c

2
dt(i/2) + dt(n)

where dt(i) is the price of a zero-coupon bond of maturity i
Par yield ypt (n): the coupon rate c such that a security with that maturity would
trade at par, i.e. Pt(n) = 1

1 =
2n∑
i=1

ypt (n)

2
dt(i/2) + dt(n)

Given the zero-coupon rate and semi-annual coupon payment timing, we can solve for
the par yield
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Duration

▶ Macaulay duration of a bond: the weighted average of the time that the investor
must wait to receive the cash flow on a coupon-bearing bond

D =
1

Pt(n)

[
2n∑
i=1

i

2

c

2

1

(1 + y/2)i
+

n

(1 + y/2)2n

]

▶ Given maturity, higher coupon rate, shorter duration

▶ Duration and bond price

Pt(n) =
2n∑
i=1

c

2

1

(1 + y/2)i
+

1

(1 + y)n

−D ≈ d lnPt(n)

dyt
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Convexity

Notice that

d lnPt(n) = −Ddy +
1

2
κ(dy)2

where κ = 1
P

d2P
dy2 is the convexity of the bond.

▶ Convexity: capital loss from interest rate rise smaller than capital gain from
interest rate fall

▶ Essentially a Jensen’s inequality term

4 / 108



Forward Rate

Forward rate: the yield that an investor would require today to make an investment
over a specified period in the future, for m years beginning n years hence

ft(n,m) = − 1

m
ln

(
Pt(n +m)

Pt(n)

)

=
1

m
((n +m)yt(n +m)− nyt(n))

Take limit m → 0,

lim
m→0

ft(n,m) =
∂

∂n
lnPt(n)

Yield can be expressed as

yt(n) =
1

n

∫ n

0
ft(s, 0)ds
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Yield Curve Estimation

▶ Zero-coupon bonds are hypothetical - not directly observable

▶ We don’t have securities at all maturities and cannot solve for the implied
zero-coupon yields

▶ Must infer zero-coupon yields across different maturities
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Nelson-Sigel-Svensson

ft(n, 0) = β0 + β1 exp(−n/τ1) + β2(n/τ1) exp(−n/τ1) + β3(n/τ2) exp(−n/τ2)

▶ ft(0, 0) = β0 + β1, asymptotically to β0

▶ Two humps allowed, determined by τ1 and τ2

▶ Parameters to be estimated: β0, β1, β2, β3, τ1, τ2

▶ Constructed zero-coupon yield curve regularly updated here

▶ Start from 1-year, Tbill rate usually does not fit well
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The Average Yield Curve
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Short Rate Disconnect (Lenel, Piazzesi and Schneider, 2019 JME)

Potential reason: the collateral/liquidity use of Treasury bills
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Factor Structure of Yields
Bond yields comove together strongly
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Factor Loadings and Factor Interpretations
Factors: the first three PCs of yields
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Holding Period Return

▶ Investors do not have to hold the bond to maturity. Instead, they can sell the
bond before maturing and then gets exposed to the risk of changing bond price

▶ The holding period return of an n-period bond for m periods

hprt(n,m) =
1

m
[lnPt+m(n −m)− lnPt(n)]
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Expectation Hypothesis

▶ Strong form: long-term yields are equal to the average of expected short-term
yields until the maturity

yt(n) =
1

n

n−1∑
i=0

Etyt+i (1)

▶ Weak form: long-term yields are equal to the average of expeected short term
yields until maturity plus a constant term premium

▶ An average upward-sloping yield curve: If EH holds, it must be in its weak form

13 / 108



Term Premium and Bond Risk Premium
An upward-sloped yield curve = positive average bond risk premium.
Consider an investor holding a n − j + 1 maturity bond from t + j − 1 to t + j

hprt+j (n − j + 1, 1)− yt+j−1(1) = logPt+j (n − j)− logPt+j−1(n − j + 1)− yt+j−1(1)

Add up this equation from j = 2 to n,

n∑
j=2

hprt+j (n − j + 1, 1)− yt+j−1(1) = − logPt+1(n − 1)−
n∑

j=2

yt+j−1(1)

= (n − 1)yt+1(n − 1)−
n∑

j=2

yt+j−1(1)

Take unconditional expectation on both sides,

E
n∑

j=2

hprt+j (n − j + 1, 1)− yt+j−1(1) =
1

n − 1
E(y(n − 1)− y(1))

Rolling over LT bonds with shortening maturities is equivalent to holding a LT bond to maturity.
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Three Statements of Expectation Hypothesis

▶ Long-term yield equals expected future short yields

yt(n) =
1

n

n−1∑
i=0

Etyt+i (1) + rp

▶ Forward rate equals expected future short rate

ft(n, 1) = Etyt+n−1(1) + rp

▶ Expected holding period return of long-term bond equals the short rate

Et [hprt+1(n)] = yt(1) + rp
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Testing Expectation Hypothesis: Campbell-Shiller

Term premium should predict future short rate changes

n−1∑
i=1

n − i

n
(yt+i (1)− yt+i−1(1)) = γn,0 + γn,1(yt(n)− yt(1)) + εt

Under EH, γn,1 = 1

Source: Koijen and van Nieurburgh’s lectures notes, section 8

EH fails: yield spread does forecast future short rate changes but not strong enough
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Testing Expectation Hypothesis: Campbell-Shiller
Bond excess return should not be predictable by yields

1

n

n−1∑
i=0

rt+i−1(n − i)− yt+i (1) = γn,0 + γn,1(yt(n)− yt(1)) + εt

Under EH, γn,1 = 0

Source: Koijen and van Nieurburgh’s lectures notes, section 8

EH fails: bond excess returns are predictable using yield spread. A higher yield spread
is associated with a higher future risk premium
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Testing Expectation Hypothesis: Fama-Bliss

The forward rate should predict future short rate change

yt+n−1(1)− yt(1) = an,0 + an,1(ft(n)− yt(1)) + εt+n−1

Under EH, an,1 = 1

Source: Koijen and van Nieurburgh’s lectures notes, section 8

EH fails: future yield changes are too small compared to changes in forward rate

18 / 108



Testing Expectation Hypothesis: Fama-Bliss

Bond excess return should not be predictable by forward rate

rt+1(n)− yt(1) = γn,0 + γn,1(ft(n)− yt(1)) + εt+1

Under EH, γn,1 = 0.

Source: Koijen and van Nieurburgh’s lectures notes, section 8

EH fails: bond excess returns are predictable using forward rates
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Bond Return Predictability: Cochrane-Piazzesi (2005 AER)

Improve bond return predictability using all forward rates?

1. Regress average excess return onto short rate and forward rates

1

4

5∑
n=2

rx
(n)
t+1 = γ0 + γ1y

(1)
t + γ2f

(2)
t + ...+ γ5f

(5)
t + εt+1

2. Use the fitted value as a single predictor

rx
(n)
t+1 = bn(γ̂

′
ft) + ε

(n)
t+1
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Cochrane-Piazzesi Factor
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Summary: What Do We Know About Yield Curve?

▶ Strong factor structure, 3 principal components explain basically all movements

▶ Upward-sloping yield curve

▶ EH fails and risk premium is time-varying. Bond excess returns can be predicted
by a combination of forward rates (Cochrane-Piazzesi factor)

▶ How are yields related to the macroeconomy?

▶ What are the restrictions imposed on yield dynamics?
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Why Do We Care About Bond Yields?

▶ Forecast future paths of the macroeconomy using information in bond yields

▶ Monetary policy moves short rate but what affects the real economy is the long
rate. Understanding the term structure helps understand the monetary policy
transmission

▶ Debt policy: government decides about the maturity, whose effect depends on the
determination of bond yields

▶ Derivative pricing and hedging: traders need to know how to price derivatives
depending on the state of economy
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2. Bond prices and the macroeconomy



Main Questions

▶ Macro: What do bond yields tell us about the macroeconomy?

▶ Finance: What are the macro risks embedded in bond yields?

▶ How to bond yields respond to macroeconomic shocks?

▶ How can macroeconomic factors help forecast bond yields?
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Simple VAR

Xt+1 = µ+ KXt +Σεt+1, εt+1 ∼ MVN(0, I )

▶ To obtain IRFs, we need to impose some restrictions on Σ

▶ Limitations

▶ Yields are not that much spanned by macroeconomic factors

▶ Lack of no-arbitrage restrictions

▶ Only able to forecast yields included in the VAR
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State-Space Model
▶ p-factor state dynamics

xt+1 = µ+ Kxt +Σεt+1, εt+1 ∼ MVN(0, I )

▶ Measurement equation

z̃t = A+ Bxt + ηt , ηt ∼ MVN(0,Ω)

▶ Interpretation

▶ xt captures common variation in the observables

▶ ηt the idiosyncratic deviations (cross-sectional errors)

▶ Observables: bond yields, inflation, real consumption growth

▶ m observable yields can be used to invert m latent factors

How to estimate this model? See here (page 85-168)
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No-Arbitrage: SDF and Short Rates

Bond prices should satisfy no-arbitrage relations

▶ Denote Mt+1 the real SDF, πt+1 the inflation rate, the nominal SDF is thus

M$
t+1 = Mt+1 exp(−πt+1)

▶ Real interest rate

rt = −Etmt+1 −
1

2
vart(mt+1)

▶ Nominal interest rate

r$t = −Etm
$
t+1 −

1

2
vart(m

$
t+1)
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SDF Dynamics, Short Rate and Price of Risk: Real

▶ Real SDF

mt+1 = −rt −
1

2
Λ

′
tΛt − Λ

′
tεt+1

▶ Short rate
rt = −δ0 + δ

′
1xt

▶ Price of risk
Λt = Σ−1(λ0 + λ1xt)
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SDF Dynamics, Short Rate and Price of Risk: Nominal
▶ Suppose inflation follows

π̃t = Aπ + B
′
πxt + ηπ,t

▶ Nominal SDF

m$
t+1 = −r$t − 1

2
Λ$′
t Λ

$
t −

1

2
Ωπ − Λ$′

t εt+1 − ηπ,t+1

▶ Short rate
r$t = δ$0 + δ$

′

1 xt

where

δ$0 = δ0 + Aπ + B
′
π(µ− λ0)−

1

2
B

′
πΣΣ

′
Bπ − 1

2
Ωπ

δ$
′

1 = δ
′
1 + B

′
π(K − λ0)

▶ Price of risk
Λ$
t = Σ−1(λ$0 + λ$1xt)

where
λ$0 = λ0 +ΣΣ

′
Bπ, λ

$
1 = λ1
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Bond Prices: Recursive Solution

P
(n)
t = exp(A(n) + B(n)

′
xt)

Plug in the asset pricing equation EtMt+1P
(n−1)
t+1 = P

(n)
t , we solve for A(n) and B(n)

and derive the recursive solution

B(n)
′
= B(n − 1)

′
(K − λ1)− δ

′
1

A(n)
′
= A(n − 1) + B(n − 1)

′
(µ− λ0)− δ0 −

1

2
B(n − 1)

′
ΣΣ

′
B(n − 1)

The log expected return of an n-period bond from t to t + 1

log Et(R
(n)
t+1) = rt + B(n − 1)

′
(λ0 + λ1xt)

No-arbitrage imposes restrictions on VAR coefficients A, B
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Bond Prices under the Q Measure

We can write out the dynamics of xt under the Q measure

xt+1 = µq + Kqxt +Σεqt+1

where µq = µ− λ0,K
q = K − λ1. Then bond prices can be written as

P
(n)
t = e−rtEQ

t

(
P
(n−1)
t+1

)
We can also solve for A(n) and B(n) recursively as

B(n)
′
= B(n − 1)

′
Kq − δ

′
1

A(n)
′
= A(n − 1) + B(n − 1)

′
µq − δ0 −

1

2
B(n − 1)

′
ΣΣ

′
B(n − 1)

31 / 108



Yield Curve Slope and the Macroeconomy

The shape of the term structure of interest rates is an important indicator of the
macroeconomy, especially the slope

Negative term premia predicts recessions pre-2020
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Two Explanations

▶ A flat yield curve is because investors anticipate the recession and thus anticipate
lower future interest rates

▶ The flat yield curve causes the recession

▶ Minoiu, Schneider and Wei (2023): supressed term premia lowers bank profits and
decreases credit supply
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Specifying xt

▶ Using latent factors, say, level, slope and curvature

▶ Good fit but unclear economic interpretations

▶ Using factors extracted from macroeconomic variables, for example, expected
growth and expected inflation

▶ Clear economic interpretation but usually poor fit

▶ A combination of the two (Ang and Piazzesi, 2003 JME)

▶ Better explain yield dynamics with macro factors
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Model Specification
▶ State factor Ft follows VAR(p), p = 12

Ft = µ+Φ1Ft−1 + ...+ΦpFt−p +Σut

▶ Ft = (f o
′

t , f u
′

t ) where f ot are observable macro factors (K1 = 2) and f ut are
unobservable latent variables (K2 = 3)

▶ Companion form
xt = µ+Φxt−1 +Σεt

where
xt = (xo

′

t , x
u′

t )
′
, xot = (f o

′

t , f o
′

t−1, ..., f
o′

t−p−1), x
u
t = f ut

▶ Short rate rt = δ0 + δ
′
1xt = δ0 + δ

′
11x

o
t + δ12x

u
t

▶ δ1 unconstrained, can depend on lagged macro variables

▶ Pricing kernel and the price of risk

m$
t+1 = −r$t − 1

2
Λ

′
tΛt − Λ

′
tεt

Λt = λ0 + λ1xt
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Restricted Model

▶ Unobservable factors

xut = ρxut−1 + uut , u
u
t ∼ iid N(0, I )

Normalizations

▶ Zero mean, ρ is lower-triangular, identity covariance matrix - general identified
representation

▶ Independence between macro factors and latent factors

▶ The covariance matrix of f ot is lower diagonal

▶ Limitation: monetary policy has no real effect

▶ Macro variables: inflation and real activity, both PCs
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Estimation

▶ Observable: (y
′
t , x

o′
t )

▶ By no-arbitrage, yt are affine functions of xt , so we can infer latent variables from
observed yields

▶ Assume three yields are measured without error so that the three unobserved
latent factors are exactly identified
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Estimate: Macro Model

Restricting the short rate only depends on contemporaneous factors
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Estimate: Macro Model with Lags

▶ The price of inflation and real activity risk differs in the “macro model” and
“macro model with lags”

▶ Mainly due to different specifications of the short rate
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Yield Impulse Responses

▶ Three latent factors: level, slope and curvature

▶ Inflation and real activity: differ across models, mainly respond on the short end

▶ Due to different estimates of δ11 and λ1
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Impulse Respones: Comparison

▶ Imposing no-arbitrage leads to much larger impulse responses to both inflation
and real activity shocks
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Variance Decomposition of Forecast

▶ Macro variables explain a large fraction of forecast variance at different forecast
horizons, especially the short and middle end

▶ Additional result (not shown but in the paper): inflation explains a much larger
fraction than real activity
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Out-of-Sample Forecast

▶ Including macro factors greatly improves forecasting performance
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Comparison of Factors

▶ Macro factors have substantial explanatory power on the latent factors, especially
the level and slope
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Takeaway: Ang and Piazzesi (2003)

▶ The pioneering work combining latent factors and macro factors in affine term
structure models

▶ Including macro factors in a no-arbitrage model is useful in understanding yield
impulse responses and improving forecast

▶ The traditional latent factors, especially level and slope, are significantly
associated with macroeconomic factors
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Estimating Affine Term Structure Models

▶ Maximum likelihood (traditional method)

▶ Sample code on Gregory Duffee’s website

▶ Linear regression (Hamilton and Wu, 2012 JoE)

▶ Sample code on Cynthia Wu’s website

▶ A simpler method (Joslin, Singleton and Zhu, 2011 JFE)

▶ Sample code on Scott Joslin’s website

▶ Linear regression using bond returns instead of yields (Adrian, Crump and
Moench, 2013 JFE)
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Treasury Risk Premium: Cieslak and Pavola (2015, RFS)

▶ What drives the risk premium in Treasury bonds?

▶ Idea: risk premium = yields - inflation expectation - short rate expectation

▶ Inflation expectation: trend inflation

▶ Short-rate cycle: the short rate that is orthogonal to trend inflation
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An Illustrative Affine Model
▶ Three state variables: trend inflation τt , real factor rt , price of risk factor xt

▶ Trend inflation
τt = µτ + ϕττt−1 + στε

τ
t

Realized inflation πt+1 = τt + επt+1, then τt is the expected inflation

▶ Short rate
y
(1)
t = δ0 + δττt + δr rt

▶ Real factor
rt = µr + ϕr rt−1 + σrε

r
t

Interpreted as variation in the real short rate independent of the trend inflation,
δr rt is the short rate cycle

▶ The price of risk factor
xt = µx + ϕxxt−1 + σxε

x
t

▶ Assume x shocks are not priced but x affects the price of risk for τ and r
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Solution

▶ Yield can be expressed as an affine function of τ, r , x

y
(n)
t = An + Bτ

n τt + B r
nrt + Bx

n xt

▶ Define “cycle” at each maturity (orthogonal to trend inflation) as

c
(n)
t = B r

nrt + Bx
n xt

For n = 1, c
(1)
t = δr rt , not load on x

▶ xt drives the Treasury risk premium, and the relative contribution of xt to the
cycles’ variance increases with maturity

▶ Empirical goal: extract xt from the cycles of yields
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Trend Inflation Measurement

τCPIt = (1− v)
t−1∑
i=0

v iπt−i

where πt is the year-over-year inflation

▶ Reflect sluggish response of inflation expectation

▶ v = 0.987, calibrated to survey data

▶ Use core CPI to construct trend inflation

▶ Interest rate responds to trend inflation more than one for one
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Interest Rate Cycles

▶ Project yields at each maturity onto trend inflation

y
(n)
t = an + bτnτ

CPI
t + ε

(n)
t

Construct the interest rate cycle (maturity-specific) as

c
(n)
t = y

(n)
t − ân − b̂τnτ

CPI
t

51 / 108



Predictive Regression
Predicting average excess returns r̄x t+1

▶ Yields orthogonalized to trend inflation forecast bond returns

▶ R2 higher than under the null of EH
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Horce Race

▶ Single factor

ĉf t = γ̂0 + γ̂1c
(1)
t + γ̂2c̄t
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Yield Curve

y
(n)
t = Ãn + B̃τ

n τ
CPI
t + B̃ r

nc
(1)
t + B̃x

n ĉf t + e
(n)
t
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Comparing with Level, Slope and Curvature

▶ τCPIt most correlated with the level factor

▶ Slope loads on both c
(1)
t and ĉf t

▶ c
(1)
t does not forecast return, so slope is a noisy measure of bond risk premium
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Horce Race: Cochrane Piazzesi (CP) Factor
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Out-of-Sample Forecast
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Cyclicality of Bond Risk Premium: Ludvigson and Ng (2009, RFS)

▶ Do bond risk premiums move with macroeconomic factors? If so, how?

▶ Dynamic factor model to extract macro factors from more than 100 macro series
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Predictive Regression
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Countercyclical Bond Risk Premium
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The Importance of Including Macro Risk Factors
▶ Excluding macro risk factors, bond risk premium is acyclical
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The Spanning Puzzle: Joslin, Prebsch and Singleton (2014, JF)

▶ In a general framework in which common latent factors drive macro variables and
bond yields, we need the same number of yields as latent factors to back out the
latent factors

▶ Put differently, a combination of yields should span the latent factors and thus the
predictable component of macroeconomic variables

▶ Testable implications

▶ Projecting macro variables onto yields should lead to serially uncorrelated residuals

▶ Yields should have high explanatory power on the predictable component of macro
variables (through predictive regression)
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Residual Serial Correlation
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R2: Yields and Predictable Components of Macro Variables

▶ Yields do not span the predictable component of macro variables
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Knife-edge Restriction

▶ A possible explanation: macro variables affect both expected short rate and bond
risk premium, whose effects offset

▶ On this explanation: Bauer and Rudebusch (2018, RF)
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Do Macro Variables Span Yields?

▶ Macro variables account for about 60-70% of yield variance

▶ May be related to future macro variables, need more economic structure
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Macro Risks in Stocks and Bonds: Stock-bond Correlation
▶ Stock-bond correlation was positive before 2000, and turned negative afterwards

until Covid, and reverted recently

Source: Pflueger (2024)
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Why Should We Care?

▶ A big deal for asset allocation: How to invest in stocks and bonds jointly?

▶ Identify changing underlying macroeconomic environment/risks

▶ ...
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Related Literature

▶ Campbell, Sunderam and Viceira (2017, CFR) and Campebll, Pflueger and Viceira
(2020, JPE): time-varying real-nominal covariance

▶ Song (2017, RFS): changing MP regime and changing inflation cyclicality

▶ Chernov, Lochstoer and Song (2023): changing transitory vs permanent
component of productivity

▶ Fang, Liu and Roussanov (2024): changing cyclicality of energy inflation

▶ Pflueger (2024): MP regime + supply/demand dominance shift

69 / 108



3. Structural models of bond prices



Roadmap

▶ A New-Keynesian term structure model

▶ Structural model of SDF (consumption-based models)

▶ General equilibrium with both consumption and production
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NK Model: Bekaert, Cho and Moreno (2010, JMCB)

▶ Term structure is the key to understanding monetary policy transmission

▶ Monetary policy moves the short rate, but the cost of capital is a long rate

▶ Most macro models abstract it away by assuming expectation hypothesis

▶ This paper: connect the NK model and no-arbitrage term structure models

▶ Using bond yields to identify macro parameters and latent factors (inflation target
and natural rate of output)

▶ A restricted affine model that follows NK decision rule
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The Full Model

▶ Philips curve

πt = δEtπt+1 + (1− δ)πt−1 + κ(yt − ynt ) + εAS ,t

▶ IS curve

yt = αIS + µEtyt+1 + (1− µ)yt−1 − ϕ(it − Etπt+1) + εIS ,t

▶ Generalized Taylor rule

it = αMP + ρit−1 + (1− ρ)[β(Etπt+1 − π∗t ) + γ(yt − ynt )] + εMP,t

▶ Dynamics of latent factors
ynt = λynt−1 + εyn,t

π∗t = φ1Etπ
∗
t+1 + φ2π

∗
t−1 + φ3πt + επ∗,t
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The Full Term Structure Model

▶ State dynamics from the NK model

xt = c +Ωxt−1 + Γεt

where the VAR coefficients are restricted by the NK structural parameters

▶ SDF

mt+1 = lnψ − σyt+1 + (σ + η)yt − ηyt−1 + (gt+1 − gt)− πt+1

where gt is an aggregate demand shock

▶ Bond yields are affine function of xt and the model can be estimated using more
information from bond yields
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Consumption-based Models

▶ A fundamental result: Backus, Gregory and Zin (1989)

▶ Habit formation: Wachter (2006)

▶ LRR: Bansal and Shaliastovich (2013)
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Backus, Gregory and Zin (1989) Result

▶ Matching the observed positive bond risk premium would require aggregate
consumption growth to have a counterfactually large and negative autocorrelation

▶ Intuition: risk-free rate increases when expected consumption growth is high. To
have a positive bond risk premium, expected consumption growth must be low
(bond price is high) when SDF is low (consumption growth is high)

▶ Require a negative correlation of consumption growth
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Habit: Wachter (2006, JFE)
▶ Preference

E
∞∑
t=0

(Ct − Xt)
1−γ − 1

1− γ

where Xt is defined indirectly through surplus consumption

St ≡
Ct − Xt

Ct

▶ Habit specification

st+1 = (1− ρ)s̄ + ϕst + λ(st)(∆ct+1 − Et∆ct+1)

▶ Consumption dynamics
∆ct+1 = g + vt+1

▶ Risk-free rate

rf ,t = − ln δ + γg + γ(1− ϕ)(s̄ − st)−
γ2σ2v
2

(1 + λ(st))
2

λ(st) controls the SDF volatility
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Specifying λ(st)

▶ Parameterize λ(st) as

λ(st) = (1/S̄)
√
1− 2(st − s̄)− 1

where

S̄ = σv

√
γ

1− ϕ− b/γ

Thus,

rf ,t = − ln δ + γg − γ(1− ϕ)− b

2
+ b(s̄ − st)

▶ The role of b

▶ Campbell and Cochrane (1999): b = 0, constant interest rate
▶ b > 0: low interest rate when st is high, making bonds risky

▶ Intertemporal smoothing > precautionary saving effect
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Consumption and Inflation Dynamics

∆ct+1 = (1− ψ1)g + ψ1∆ct + θ1v1,t + v1,t+1

∆πt+1 = (1− ψ2)π̄ + ψ2∆πt + θ2v2,t + v2,t+1

where v1,t , v2,t have correlation ρ. Estimating the model leads to ρ = −0.205.
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Results: Average Yield Curve

▶ Both the nominal and real yield curves slope up

79 / 108



Results: Return Predictability

80 / 108



Inflation and the Real Economy: Piazzesi and Schneider (2006, NBER
Macro Annual)

▶ One way to obtain an upward-sloped yield curve in a standard model (without
habit) is to assume a negative correlation between expected inflation and expected
consumption growth

▶ Nominal bond prices in bad times

▶ Higher because expected growth rate is low

▶ Lower because expected inflation is high

▶ The second dominates the first, making nominal bonds risky
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LRR: Bansal and Shaliastovich (2013, RFS)
▶ Representative agents with Epstein-Zin utility: real SDF

mt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1)rc,t+1

▶ Macroeconomic dynamics

∆ct+1 = µc + xct + σcηc,t+1

πt+1 = µπ + xπt + σπηπ,t+1

▶ xt follows
xt+1 = Πxt +Σtet+1

where

Π =

[
ρc ρcπ
0 ρπ

]
,Σt =

[
σct 0
0 σπt

]
Importantly, ρcπ < 0, i.e., higher expected inflation lowers future expected growth

▶ σct and σπt follow AR(1) processes
82 / 108



Bond Markets: Data and Model
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Endogenous Growth Model: Kung (2015, JFE)

▶ Why are expected inflation and expected growth negative correlated?

▶ Through endogenous growth

▶ Negative TFP shock lowers current output and raises current and expected inflation

▶ Because the expected future profit of R&D is lower, firms spend less in R&D and
thus harm long-run growth

▶ Bansal-Shaliastovich + NK + Romer
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Model Setup
▶ Households

Ut =

{
(1− β)(C ∗

t )
1−γ
θ + β

[
Et(U

1−γ
t+1 )

] 1
θ

}θ/(1−γ)

where C ∗
t = Ct(L̄− Lt)

τ

▶ Final goods producers

Yt =

(∫ 1

0
X

(ν−1)/ν
i ,t di

)ν/(ν−1)

▶ Intermediate good firms
Xi ,t = Kα

i ,t(Zi ,tLi ,t)
1−α

where Ni ,t has externalities

Zi ,t = AtN
η
i ,tN

1−η
t

▶ at ≡ logAt and σ
2
t follow exogenous AR(1) processes
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Model Setup (Cont’ed)
▶ Intermediate good firms

▶ Physical capital dynamics

Ki,t+1 = (1− δk)Ki,t +Φk(
Ii,t
Ki,t

)Ki,t

where Φk(
Ii,t
Ki,t

) =
α1,k

1−1/ζk

(
Ii,t
Ki,t

)1−1/ζk
+ α2,k

▶ R&D stock dynamics

Ni,t+1 = (1− δn)Ni,t +Φn(
Si,t
Ni,t

)Ni,t

where Φn(
Si,t

Ni,t
) =

α1,n

1−1/ζn

(
Si,t

Ni,t

)1−1/ζn
+ α2,n

▶ Rotemberg pricing

G (Pi,t ,Pi,t−1;Pt ,Yt) =
ϕR
2

(
Pi,t

ΠssPi,t−1
− 1

)2

Yt

▶ Firms’ choice variables: physical capital investment Ii,t , R&D investment Si,t , labor
demand Li,t and price setting Pi,t
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Model Setup (Cont’ed)

▶ Central bank

ln

(
Rt+1

Rss

)
= ρr ln

(
Rt

Rss

)
+ (1− ρr )

(
ρπ ln

(
Πt

Πss

)
+ ρy ln

(
Ŷt

Yss

))
+ σξξt

▶ Equilibrium

▶ All intermediate firms are identical, i.e., Pi,t = Pt , Xi,t = Xt , Ki,t = Kt , Li,t = Lt ,
Ni,t = Nt , Ii,t = It , Si,t = St

▶ Resource constraint

Yt = Ct + St + I + t +
ϕR
2

(
Πt

Πss
− 1

)2

Yt
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Asset Pricing Moments
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Other Production-based Models

▶ Rudebusch and Swanson (2008 JME, 2012 AEJ Macro)

▶ Jermann (2013 JFE)

▶ van Binsbergen et al (2012 JME)
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The Role of Inflation: Duffee (2018, JF)

▶ Building block of generating upward-sloped yield curve: negative correlation
between expected inflation and growth

▶ Duffee (2018) questions the quantitative importance of expected inflation on
explaining bond yields

▶ The variance of shocks to expected inflation to the variance of yields is much smaller
than most macro-finance models predict

▶ Nominal yield news: mostly news on real rate or risk premia
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4. Preferred-habitat models

Vayanos and Vila (2021, ECMA)



Two Views of the Term Structure of Interest Rates

▶ Consumption-based view: intertemporal rate of substitution

▶ Preferred-habitat view: investor clienteles for specific maturity

▶ A degree of segmentation

▶ Examples interpreted with the preferred-habitat view

▶ 2004 UK pension reform: Pension funds bought long-maturity bonds in large
quantities and supresses long-maturity yields

▶ QE by major central banks: large-scale purchases of long-maturity bonds

▶ Shortcoming: extreme form of preferred-habitat view leaves large arbitrage profits
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This Paper: Research Questions

▶ How do shocks to clientele demands affect term structure?

▶ What’s the effect of large-scale central bank bond purchases?

▶ What are implications of the preferred-habitat view for interest rate dynamics,
bond risk premia, and monetary transmission?
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What This Paper Does

▶ A model that formalizes the preferred-habitat view and embeds into a modern
no-arbitrage framework

▶ Answer research questions both qualitatively and quantitatively

▶ Replicate basic patterns of interest rates: average slope, return predictability

▶ How does monetary policy transmiss to the long rate?

▶ How does the demand of bonds at certain maturities affect the whole yield curve?
More specifically, what is the effect of QE?
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Relation to the Literature

▶ Formalize the preferred-habitat theory of term structure

▶ Portfolio balance channel in macroeconomic models

▶ Demand shocks drive asset prices

▶ A special affine no-arbitrage term structure model
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Model Setup: Preferred Habitat Investors

▶ For each maturity τ , the demand of preferred habitat investors

Z
(τ)
t = −α(τ) logP(τ)

t − β
(τ)
t

▶ Z
(τ)
t is in present value

▶ α(τ) is the price elasticity

▶ β
(τ)
t is the intercept of the demand function. A higher βτ

t means a lower demand for
preferred habitat investors

β
(τ)
t = θ0(τ) +

K∑
k=1

θk(τ)βk,t
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Model Setup: Arbitrageurs

max
X τ
t

[
Et(dWt)−

a

2
vart(dWt)

]
s.t. : dWt =

(
Wt −

∫ ∞

0
X

(τ)
t dτ

)
rtdt +

∫ ∞

0
X

(τ)
t

dP
(τ)
t

P
(τ)
t

where P
(τ)
t is the price of bond with maturity τ . Notice that P is not only a function

of state variables but also τ and

dP
(τ)
t = P

(τ−dt)
t+dt − P

(τ)
t

96 / 108



Short Rate Model
▶ Mute demand risk, θk(τ) = 0 for all k and β

(τ)
t = θ

(τ)
0

▶ Short rate is mean-reverting

drt = κr (r̄ − rt)dt + σrdBr ,t

▶ Equilibrium conjecture (affine solution!)

P
(τ)
t = exp (−Ar (τ)rt + C (τ))

▶ Bond return dynamics

dP
(τ)
t

P
(τ)
t

= µ
(τ)
t dt − Ar (τ)σrdBr ,t

where

µ
(r)
t = A

′
r (τ)rt + C

′
(τ) + Ar (τ)κr (rt − r̄) +

1

2
Ar (τ)

2σ2r
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Bond Risk Premia

µ
(τ)
t − rt = −Ar (τ)λr ,t

where

λr ,t = −aσ2r

∫ ∞

0
X

(τ)
t Ar (τ)dτ

▶ a: risk aversion

▶
∫∞
0 X

(τ)
t Ar (τ)dτ : the transmission of short rate shock to SDF (portfolio return)

shock

98 / 108



Market Clearing and Solution in ODEs

X
(τ)
t + Z

(τ)
t = 0

Substitute the market clearing condition into λr ,t :

−Ar (τ)λr ,t = A
′
r (τ)rt + C

′
(τ) + Ar (τ)κr (rt − r̄) +

1

2
Ar (τ)

2σ2r − rt

where

λr ,t = −aσ2r

∫ ∞

0
α(τ) ([Ar (τ)rt + C (τ)]− θ0(τ))Ar (τ)dτ

The constant and coefficient on r should be identifical, so that

A
′
r (τ) + κrAr (τ)− 1 = −aσ2

r Ar (τ)

∫ ∞

0
α(τ)Ar (τ)

2dτ

C
′
(τ)− κr r̄Ar (τ) +

1

2
σ2
r Ar (τ)

2 = aσ2
r Ar (τ)

∫ ∞

0
[θ0(τ)− α(τ)C(τ)]Ar (τ)dτ

Boundary conditions Ar (0) = C (0) = 0
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The Transmission of Monetary Policy

▶ When short rate drops, arbitrageurs are incentivized to do carry trade and increase
their holding of long bonds, which lowers long rate

▶ Long rate response smaller than short rate as arbitraguers require compensation
for bearing interest rate risks

▶ Match the relation between yield curve slope and risk premia
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Global Demand Effect

What happens when the demand intercept θ0(τ) changes to θ0(τ) + ∆θ0(τ)?

▶ The only place where θ0(τ) enters the solution is in the price of risk

▶ Price of risk does not depend on θ0(τ) only, but on
∫∞
0 Ar (τ)θ0(τ)dτ

▶ The origin of maturity-specific demand change does not matter as long as its effect
on the price of risk is the same

▶ Global effect on all yields
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Demand Risk Model

▶ Introduce demand risks, assuming mean-reverting K demand factors (zero-mean)
and short rate with

dqt = −Γ(qr − r̄E)dt +ΣdBt

▶ Same solution procedure, more complicated math, skipped
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The Transmission of Monetary Policy

▶ Demand risk weakens the transmission of monetary policy

▶ Carry trade is riskier

▶ As long-maturity bonds are more exposed to demand shocks, investors may even
hold negative long-term bonds to hedge demand risks

▶ Butterfly trades

▶ May have oscilating price sensitivity to short rate
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Localized Demand Effect

What happens when the demand intercept θ0(τ) changes to θ0(τ) + ∆θ0(τ)?

▶ Demand affects yields through
∫∞
0 θ0(τ)Ar (τ)dτ and

∫∞
0 θ0(τ)Aβ(τ)dτ

▶ Long-maturity demand affects demand term more than short rate term, and
demand term affects long rate more

▶ Localized effect of demand change
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Calibration
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Policy Experiment: Forward Guidance

106 / 108



Policy Experiment: QE
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Related Literature

▶ Bond supply effect: Greenwood and Vayanos (2014, RFS)

▶ Maturity: Guibaud, Nosbusch and Vayanos (2013, RFS)

▶ Preferred habitat + NK models (Ray, 2019)

▶ QE + preferred habitat (Droste, Gorodnichenko, Ray, 2024 JPE)

▶ Preferred habitat models with constrained intermediaries as arbitrageurs (Kekre,
Lenel, and Minardi, 2024)

▶ Preferred habitat model in FX market
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